Как перевести зиверты в рентгены. Перевести единицы: микрорентген в час в микрозиверты в час Допустимая доза радиации в час

Сегодня очень остро встал вопрос радиационного фона. Огромное количество приборов, которые окружают человека, способны нанести ему вред. Именно поэтому сотрудники санитарных инспекций, а также работники службы радиационной безопасности часто проверяют дома, улицы, предприятия, потому что норма радиации превышает допустимые значениия.

Нормы для человека

Норма радиации – это те значения, которые применяются учеными для обозначения безопасной среды в условиях воздействия на него различных приборов. Нормы радиации устанавливаются вышестоящими органами власти, которые и стараются регулировать четкость соблюдения их на том или ином предприятий, а также в обыденной жизни.

Нередко можно услышать, как обсуждается уровень радиации. Норма иногда превышает допустимые значения. В основном завышенные показатели наблюдаются на предприятиях химической промышленности, где работники носят специальные костюмы, чтобы избежать облучения.

Допустимые нормы

Нельзя точно сказать, какова норма радиации для человека. Учеными лишь были выявлены некоторые соответствия излучения с повседневными моментами жизни. Прежде всего, нужно отметить, что все показатели измеряются в микрозивертах в час (в этом определяется уровень воздействия гамма-излучения и радиационного фона).

Считается, что норма радиации, которая является допустимой для простого обывателя, не должна быть больше 5 мЗв в год. Причем показатели рассчитываются в совокупности за пять лет. Если же уровень повышен, то радиологи будут выяснять причину, и прежде всего искать ее в воздухе, проверять работающие химические предприятия в городе.

Примеры некоторых показателей

Итак, норма радиации (допустимая) для человека:


Как видно, человек на протяжении всей жизни поддается облучению. В зависимости от того, какой образ жизни он ведет и где работает, оно будет больше или меньше.

Эффекты при различных дозах облучения

Отдельно нужно сказать о том, какое воздействие окажет та или иная доза облучения:

  • 11 мкЗв в час – именно такая доза считается опасной и увеличивает во много раз вероятность появления раковых опухолей в организме человека.
  • 10000 мЗв в час – при таком облучении человек сразу же заболевает и умирает в течение двух или трех недель.
  • 1000 мЗв в год – при такой дозе облучения человек ощущает временное недомогание, которое проявляется симптомами лучевой болезни. Но она не приводит к летальному исходу и ухудшению состояния настолько, что человек не может вести нормальный образ жизни. Главная опасность состоит в том, что риск онкологических заболеваний становится настолько большим, что потребуются ежегодные осмотры для контроля за мутациями клеток.
  • 0,73 Зв в час – при таком кратковременном облучении наступает изменение состава крови, которое со временем пройдет. Но, как правило, это скажется на самочувствии человека в будущем.

Норма радиации для человека и последствия ее превышения

В том случае, если радиационный фон повышен, пусть даже ненамного, это может привести к таким последствиям для человека, как:

  • онкологические заболевания, причем в разы увеличивается скорость метастазирования;
  • проблемы с развитием плода во время беременности;
  • бесплодие как у женщин, так и у мужчин;
  • потеря зрения;
  • снижение защитной функции организма, а затем – постепенное ее уничтожение.

Что делать в случае повышения радиационного фона

Главной причиной того, что допустимая норма радиации завышена, являются окружающие человека предметы. На сегодняшний день все бытовые приборы облучают жителей земного шара. Если радиационный фон значительно повышен, необходимо обратить внимание и проверить:

  • батареи в доме, особенно те, которые были произведены еще в СССР;
  • мебель;
  • плитку, которую обычно выкладывают в туалете и ванной;
  • некоторые продукты питания, особенно привезенную рыбу (даже сейчас через границу перевозится рыба, побывавшая в отравленных водах).

Норма радиации – настолько важный показатель, что нельзя его игнорировать. Правда, сегодняшний темп и стиль жизни многих людей, а также всеобщая распространенность техники не позволяют его понизить. А происходит это потому, что ни один человек не может обойтись без сотового телефона, компьютера, интернета, так как на этом построена вся наша жизнь! Вот и приходится слышать в новостях о том, что стало умирать больше людей от онкологических заболеваний!


В я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.

В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.

Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 - 10 мЗв, а за сутку, соответственно 0,004 - 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.

Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (мили зиверта) радиации, что вполне даже соответствует норме.

Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.

Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год - считается абсолютно безопасной нормальной дозой радиационного фона.

20 мЗв/год - предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.

150 мЗв/год - увеличивает вероятность возникновения онкологических заболеваний.

250 мЗв - после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.

Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.

До 0,01 мЗв - эту дозу можно не учитывать.

Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв , такая работа относится к радиационно опасным и предполагает ношение дозиметра.

До 100 мЗв - допустимое разовое (!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.

Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.

Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.

1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем - тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.

После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).

1,5-2,5 Гр (1500-2500 мЗв) - наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй - высок риск летального исхода.

2,5-4 Гр (2500-4000 мЗв) - возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы - вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.

Смертельные дозы проникающей радиации:

3-4 Гр (3000-4000 мЗв) - повреждение костного мозга, в течение месяца после облучения смертельный исход возможен у 50% облученных (без медицинского вмешательства).

4-7 Гр (4000-7000 мЗв) - развивается тяжелая форма лучевой болезни и высока смертность.

Свыше 7 Гр (7000 мЗв) - крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.

10Гр (10 зВ) - смерть в течение 2-3 недель.

15 Гр - 1-5 суток и всё.

Таким образом, накопленная эквивалентная эфективная доза является числом "показательным ". Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель "предсказательный ". Он называется мощностью дозы эквивалентного эфективного облучения . Он тоже измеряется в зивертах/час, но показывает «будущее».

На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микро зиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв . Этот показатель является в пределах допустимого фонового излучения.

0,2 мкЗв/час (~20 микрорентген/час) - наиболее безопасный уровень мощности фонового излучения.

0,3 мкЗв/час (~30 мкР/час) - предел безопасного фонового излучения, установленый санитарными нормами в Укранине.

0,5 мкЗв/час (~50 мкР/час) - верхний предел допустимой безопасной мощности дозы фонового излучения.

Сократив время непрерывного нахождения до нескольких часов - люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час , а при времени экспозиции до нескольких десятков минут - относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях - флюорография, небольшие рентгеновские снимки и др.).

В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».

Спасибо за внимание.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрорентген в час [мкР/ч] = 0,01 микрозиверты в час [мкЗв/час]

Исходная величина

Преобразованная величина

грей в секунду эксагрей в секунду петагрей в секунду терагрей в секунду гигагрей в секунду мегагрей в секунду килогрей в секунду гектогрей в секунду декагрей в секунду децигрей в секунду сантигрей в секунду миллигрей в секунду микрогрей в секунду наногрей в секунду пикогрей в секунду фемтогрей в секунду аттогрей в секунду рад в секунду джоуль на килограмм в секунду ватт на килограмм зиверт в секунду миллизиверты в год миллизиверты в час микрозиверты в час бэр в секунду рентген в час миллирентген в час микрорентген в час

Подробнее о мощности поглощенной дозы и суммарной мощности дозы ионизирующего излучения

Общие сведения

Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как света и тепла. В этой статье мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. В дальнейшем в этой статье под излучением мы подразумеваем именно ионизирующее излучение.

Источники излучения и его использование

Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.

Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.

У радиации множество применений - от производства электроэнергии до лечения больных раком. В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей.

Определения

Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в среде; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации.

Общее количество радиации в среде, измеряемое на единицу времени, называют суммарной мощностью дозы ионизирующего излучения . Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы . Суммарную мощность дозы ионизирующего излучения легко найти с помощью широко распространенных измерительных приборов, таких как дозиметры , основной частью которых обычно являются счетчики Гейгера . Работа этих приборов более подробно описана в статье об экспозиционной дозе радиации . Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем.

Радиация и биологические материалы

У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.

Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.

При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком.

Условия, которые усугубляют влияние радиации на организм

Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.

Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.

С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.

Доза радиации

Нам известно, что большая доза радиации, называемая дозой острого облучения , вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также те, что не специализированы. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. Кожа, кости, и мышечные ткани менее подвержены воздействию, а самое малое влияние радиации - на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации.

Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования на данный момент на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей, так как эти эксперименты могут быть опасны для здоровья.

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм - не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения - также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте - при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации .

Опасность для здоровья, вызванная радиацией

unitconversion.org .
Мощность дозы излучения, мкЗв/ч Опасно для здоровья
>10 000 000 Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000 Очень опасно для здоровья: рвота
100 000 Очень опасно для здоровья: радиоактивное отравление
1 000 Очень опасно: немедленно покиньте зараженную зону!
100 Очень опасно: повышенный риск для здоровья!
20 Очень опасно: опасность лучевой болезни!
10 Опасно: немедленно покиньте эту зону!
5 Опасно: как можно быстрее покиньте эту зону!
2 Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 миллирентген в час [мР/ч] = 1000 микрорентген в час [мкР/ч]

Исходная величина

Преобразованная величина

грей в секунду эксагрей в секунду петагрей в секунду терагрей в секунду гигагрей в секунду мегагрей в секунду килогрей в секунду гектогрей в секунду декагрей в секунду децигрей в секунду сантигрей в секунду миллигрей в секунду микрогрей в секунду наногрей в секунду пикогрей в секунду фемтогрей в секунду аттогрей в секунду рад в секунду джоуль на килограмм в секунду ватт на килограмм зиверт в секунду миллизиверты в год миллизиверты в час микрозиверты в час бэр в секунду рентген в час миллирентген в час микрорентген в час

Подробнее о мощности поглощенной дозы и суммарной мощности дозы ионизирующего излучения

Общие сведения

Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как света и тепла. В этой статье мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. В дальнейшем в этой статье под излучением мы подразумеваем именно ионизирующее излучение.

Источники излучения и его использование

Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.

Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.

У радиации множество применений - от производства электроэнергии до лечения больных раком. В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей.

Определения

Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в среде; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации.

Общее количество радиации в среде, измеряемое на единицу времени, называют суммарной мощностью дозы ионизирующего излучения . Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы . Суммарную мощность дозы ионизирующего излучения легко найти с помощью широко распространенных измерительных приборов, таких как дозиметры , основной частью которых обычно являются счетчики Гейгера . Работа этих приборов более подробно описана в статье об экспозиционной дозе радиации . Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем.

Радиация и биологические материалы

У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.

Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.

При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком.

Условия, которые усугубляют влияние радиации на организм

Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.

Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.

С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.

Доза радиации

Нам известно, что большая доза радиации, называемая дозой острого облучения , вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также те, что не специализированы. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. Кожа, кости, и мышечные ткани менее подвержены воздействию, а самое малое влияние радиации - на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации.

Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования на данный момент на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей, так как эти эксперименты могут быть опасны для здоровья.

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм - не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения - также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте - при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации .

Опасность для здоровья, вызванная радиацией

unitconversion.org .
Мощность дозы излучения, мкЗв/ч Опасно для здоровья
>10 000 000 Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000 Очень опасно для здоровья: рвота
100 000 Очень опасно для здоровья: радиоактивное отравление
1 000 Очень опасно: немедленно покиньте зараженную зону!
100 Очень опасно: повышенный риск для здоровья!
20 Очень опасно: опасность лучевой болезни!
10 Опасно: немедленно покиньте эту зону!
5 Опасно: как можно быстрее покиньте эту зону!
2 Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах

Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.

Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?

Рассмотрим ниже.

Естественная радиация

Что имеют в виду под словами «естественный радиационный фон»?

Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.

Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.

Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.

Внимание:

  1. Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
  2. Допустимый фон – 16-60 мкР/час.

Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря (экспозиционная доза солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).

Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука доза облучения составит 50 мкЗв.

Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.

Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.

Виды радиационного фона


Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

Виды фона:

  1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
  2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
  3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

Как измеряют


Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.

Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

Единицы измерения


Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

Всего существует 5 главных единиц:

  1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
  2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
  3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
  4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
  5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

В системе СИ прописаны Грей, Зиверт.

Существует ли вообще безопасная доза?


Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.

Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.

Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.

Кем устанавливаются нормы


Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.

Документы:

  1. НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
  2. ОСПОР-99.

Поглощенная доза


Она показывает, какое количество радионуклидов было поглощено организмом.

Допустимые дозы облучения согласно НРБ-99:

  1. За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
  2. За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.

Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.

Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.

Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.

Допустимая, безопасная радиация для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.

Нормы согласно СанПин


Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:

  1. Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
  2. В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
  3. Для продуктов норма радиации прописана детально, по каждому виду отдельно.

Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.

Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.

Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?

Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.

Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.

Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.

Смертельная доза


Какая доза будет смертельной?

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

Иконография