Значение атф в жизнедеятельности человека. Строение и биологическая роль атф

В основе всех живых процессов лежит атомно-молекулярное движение. Как дыхательный процесс, так и клеточное развитие, деление невозможны без энергии. Источником энергетического снабжения является АТФ, что это такое и как образуется рассмотрим далее.

Сущность понятия

Перед изучением понятия АТФ необходима его расшифровка. Данный термин означает нуклеозидтрифосфат, который существенно значим для энергетического и вещественного обмена в составе организма.

Это уникальный энергетический источник, лежащий в основе биохимических процессов. Данное соединение является основополагающим для ферментативного образования.

АТФ был открыт в Гарварде в 1929 году. Основоположниками стали ученые Гарвардской медицинской школы. В их число вошли Карл Ломан, Сайрус Фиске и Йеллапрагада Суббарао. Они выявили соединение, которое по строению напоминало адениловый нуклеотид рибонуклеиновых кислот.

Отличительной особенностью соединения было содержание трех остатков фосфорной кислоты вместо одного. В 1941 году ученый Фриц Липман доказал, что АТФ имеет энергетический потенциал в пределах клетки. Впоследствии был обнаружен ключевой фермент, который получил название АТФ-синтаза. Его задача – образование в митохондриях кислотных молекул.

АТФ – это энергетический аккумулятор в клеточной биологии, является обязательным для успешного осуществления биохимических реакций.

Биология аденозинтрифосфорной кислоты предполагает ее образование в результате энергетического обмена. Процесс состоит из создания 2 молекул на второй стадии. Остальные 36 молекул появляются на третьем этапе.

Скопление энергии в структуре кислоты происходит в связующей части между остатками фосфора. В случае отсоединения 1 фосфорного остатка происходит энергетическое выделение 40 кДж.

В результате кислота превращается в аденозиндифосфат (АДФ). Последующее фосфатное отсоединение способствует появлению аденозинмонофосфата (АМФ).

Следует отметить, цикл растений предусматривает повторное использование АМФ и АДФ, в результате которого происходит восстановление этих соединений до состояния кислоты. Это обеспечивается процессом .

Строение

Раскрытие сущности соединения возможно после изучения того, какие соединения входят в состав молекулы АТФ.

Какие соединения входят в состав кислоты:

  • 3 остатка фосфорной кислоты. Кислотные остатки объединяются друг с другом посредством энергетических связей неустойчивого характера. Встречается также под названием ортофосфорной кислоты;
  • аденин: Является азотистым основанием;
  • рибоза: Представляет собой пентозный углевод.

Вхождение в состав АТФ данных элементов присваивает ей нуклеотидное строение. Это позволяет относить молекулу к категории нуклеиновых кислот.

Важно! В результате отщепления кислотных молекул происходит высвобождение энергии. Молекула АТФ содержит 40 кДж энергии.

Образование

Формирование молекулы происходит в митохондриях и хлоропластах. Основополагающий момент в молекулярном синтезе кислоты – диссимиляционный процесс. Диссимиляция – процесс перехода сложного соединения до относительно простого за счет разрушения.

В рамках синтеза кислоты принято выделять несколько стадий:

  1. Подготовительная. Основа расщепления – пищеварительный процесс, обеспечивается за счет ферментативного действия. Распаду подвергается пища, попавшая в организм. Происходит жировое разложение до жирных кислот и глицерина. Белки распадаются до аминокислот, крахмал – до образования глюкозы. Этап сопровождается выделением энергии теплового характера.
  2. Бескислородная, или гликолиз. В основе лежит процесс распада. Происходит глюкозное расщепление с участием ферментов, при этом 60% выделяемой энергии превращается в тепло, остальная часть остается в составе молекулы.
  3. Кислородная, или гидролиз; Осуществляется внутри митохондрий. Происходит с помощью кислорода и ферментов. Участвует выдыхаемый организмом кислород. Завершается полной . Подразумевает энергетическое выделение для формирования молекулы.

Существуют следующие пути молекулярного образования:

  1. Фосфорилирование субстратного характера. Основано на энергии веществ в результате окисления. Превалирующая часть молекулы формируется в митохондриях на мембранах. Осуществляется без участия ферментов мембраны. Совершается в цитоплазматической части посредством гликолиза. Допускается вариант образования за счет транспортировки фосфатной группы с иных макроэргических соединений.
  2. Фосфорилирование окислительного характера. Происходит за счет окислительной реакции.
  3. Фотофосфорилирование у растений в ходе фотосинтеза.

Значение

Основополагающее значение молекулы для организма раскрывается через то, какую функцию выполняет АТФ.

Функционал АТФ включает следующие категории:

  1. Энергетическую. Обеспечивает организм энергией, является энергетической основой физиологических биохимических процессов и реакций. Происходит за счет 2 высокоэнергетических связей. Подразумевает мышечное сокращение, формирование трансмембранного потенциала, обеспечение молекулярного переноса сквозь мембраны.
  2. Основу синтеза. Считается исходным соединением для последующего образования нуклеиновых кислот.
  3. Регулятивную. Лежит в основе регуляции большинства процессов биохимического характера. Обеспечивается за счет принадлежности к аллостерическому эффектору ферментативного ряда. Воздействует на активность регуляторных центров путем их усиления или подавления.
  4. Посредническую. Считается вторичным звеном в передаче гормонального сигнала в клетку. Является предшественником образования циклического АДФ.
  5. Медиаторную. Является сигнальным веществом в синапсах и иных взаимодействиях клеточного характера. Обеспечивается пуринергическая сигнальная передача.

Среди вышеперечисленных моментов главенствующее место отводится энергетической функции АТФ.

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

В теле человека около 70 триллионов клеток. Для здорового роста каждой из них необходимы помощники - витамины. Молекулы витаминов малы, но их недостаток всегда заметен. Если тяжело адаптироваться к темноте, вам нужны витамины А и В2, появилась перхоть - не хватает B12, B6, P, долго не заживают синяки - дефицит витамина С. На этом уроке вы узнаете о том, как и где в клетке хранится и обрабатывается стратегический запас витаминов, как витамины активизируют работу организма, а также узнаете об АТФ - главном источнике энергии в клетке.

Тема: Основы цитологии

Урок: Строение и функции АТФ

Как вы помните, нуклеиновые кислоты состоят из нуклеотидов . Оказалось, что в клетке нуклеотиды могут находиться в связанном состоянии или в свободном состоянии. В свободном состоянии они выполняют ряд важных для жизнедеятельности организма функций.

К таким свободным нуклеотидам относится молекула АТФ или аденозинтрифосфорная кислота (аденозинтрифосфат). Как и все нуклеотиды, АТФ состоит из пятиуглеродного сахара - рибозы , азотистого основания - аденина , и, в отличие от нуклеотидов ДНК и РНК, трех остатков фосфорной кислоты (рис. 1).

Рис. 1. Три схематических изображения АТФ

Важнейшая функция АТФ состоит в том, что она является универсальным хранителем и переносчиком энергии в клетке.

Все биохимические реакции в клетке, которые требуют затрат энергии, в качестве ее источника используют АТФ.

При отделении одного остатка фосфорной кислоты, АТФ переходит в АДФ (аденозиндифосфат ). Если отделяется ещё один остаток фосфорной кислоты (что случается в особых случаях), АДФ переходит в АМФ (аденозинмонофосфат) (рис. 2).

Рис. 2. Гидролиза АТФ и превращение её в АДФ

При отделении второго и третьего остатков фосфорной кислоты освобождается большое количество энергии, до 40 кДж. Именно поэтому связь между этими остатками фосфорной кислоты называют макроэргической и обозначают соответственным символом.

При гидролизе обычной связи выделяется (или поглощается) небольшое количество энергии, а при гидролизе макроэргической связи выделяется намного больше энергии (40 кДж). Связь между рибозой и первым остатком фосфорной кислоты не является макроэргической, при её гидролизе выделяется всего 14 кДж энергии.

Макроэргические соединения могут образовываться и на основе других нуклеотидов, например ГТФ (гуанозинтрифосфат) используется как источник энергии в биосинтезе белка, принимает участие в реакциях передачи сигнала, является субстратом для синтеза РНК в процессе транскрипции, но именно АТФ является наиболее распространенным и универсальным источником энергии в клетке.

АТФ содержится как в цитоплазме , так и в ядре, митохондриях и хлоропластах .

Таким образом, мы вспомнили, что такое АТФ, каковы её функции, и что такое макроэргическая связь.

Витамины - биологически активные органические соединения, которые в малых количествах необходимы для подержания процессов жизнедеятельности в клетке.

Они не являются структурными компонентами живой материи, и не используются в качестве источника энергии.

Большинство витаминов не синтезируются в организме человека и животных, а поступают в него с пищей, некоторые синтезируются в небольших количествах микрофлорой кишечника и тканями (витамин D синтезируется кожей).

Потребность человека и животных в витаминах не одинакова и зависит от таких факторов как пол, возраст, физиологическое состояние и условия среды обитания. Некоторые витамины нужны не всем животным.

Например, аскорбиновая кислота, или витамин С, необходим человеку и другим приматам. Вместе с тем, он синтезируется в организме рептилий (моряки брали в плавания черепах, для борьбы с цингой - авитаминозом витамина С).

Витамины были открыты в конце XIX века благодаря работам русских ученых Н. И. Лунина и В. Пашутина, которые показали, что для полноценного питания необходимо не только наличие белков, жиров и углеводов, но и ещё каких-то других, на тот момент неизвестных, веществ.

В 1912 году польский ученый К. Функ (Рис. 3), изучая компоненты шелухи риса, предохраняющей от болезни Бери-Бери (авитаминоз витамина В), предположил, что в состав этих веществ обязательно должны входить аминные группировки. Именно он предложили назвать эти вещества витаминами, то есть аминами жизни.

В дальнейшем было установлено, что многие из этих веществ аминогрупп не содержат, но термин витамины хорошо прижился в языке науки и практики.

По мере открытия отдельных витаминов, их обозначали латинскими буквами и называли в зависимости от выполняемых функций. Например, витамин Е назвали токоферол (от др.-греч. τόκος - «деторождение», и φέρειν - «приносить»).

Сегодня витамины делят по их способности растворяться в воде или в жирах.

К водорастворимым витаминам относят витамины H , C , P , В .

К жирорастворимым витаминам относят A , D , E , K (можно запомнить, как слово: кеда ) .

Как уже было отмечено, потребность в витаминах зависит от возраста, пола, физиологического состояния организма и среды обитания. В молодом возрасте отмечена явная нужда в витаминах. Ослабленный организм тоже требует больших доз этих веществ. С возрастом способность усваивать витамины падает.

Потребность в витаминах также определяется способностью организма их утилизировать.

В 1912 году польский ученый Казимир Функ получил из шелухи риса частично очищенный витамин B1 - тиамин. Ещё 15 лет понадобилось для получения этого вещества в кристаллическом состоянии.

Кристаллический витамин B1 бесцветен, обладает горьковатым вкусом и хорошо растворим в воде. Тиамин найден как в растительных, так и микробных клетках. Особенно много его в зерновых культурах и дрожжах (рис. 4).

Рис. 4. Тиамин в виде таблеток и в продуктах питания

Термическая обработка пищевых продуктов и различные добавки разрушают тиамин. При авитаминозе наблюдаются патологии нервной, сердечно-сосудистой и пищеварительной систем. Авитаминоз приводит к нарушению водного обмена и функции кроветворения. Один из ярких примеров авитаминоза тиамина - это развитие болезни Бери-Бери (рис. 5).

Рис. 5. Человек, страдающий от авитаминоза тиамина - болезни бери-бери

Витамин В1 широко применяется в медицинской практике для лечения различных нервных заболеваний, сердечно-сосудистых расстройств.

В хлебопечении тиамин вместе с другим витаминами - рибофлавином и никотиновой кислотой используется для витаминизации хлебобулочных изделий.

В 1922 году Г. Эванс и А. Бишо открыли жирорастворимый витамин, названный ими токоферолом или витамином Е (дословно: «способствующий родам»).

Витамин Е в чистом виде - маслянистая жидкость. Он широко распространен в злаковых культурах, например в пшенице. Его много в растительных, животных жирах (рис. 6).

Рис. 6. Токоферол и продукты, которые его содержат

Много витамина E в моркови, в яйцах и молоке. Витамин E является антиоксидантом , то есть защищает клетки от патологического окисления, которое приводит их к старению и гибели. Он является «витамином молодости». Огромно значение витамина для половой системы, поэтому его часто называют витамином размножения.

Вследствие этого, дефицит витамина Е, в первую очередь, приводит к нарушению эмбриогенеза и работы репродуктивных органов.

Производство витамина Е основано на выделении его из зародышей пшеницы - методом спиртовой экстракции и отгонки растворителей при низких температурах.

В медицинской практике используют как природные, так и синтетические препараты - токоферолаацетат в растительном масле, заключенный в капсулу (знаменитый «рыбий жир»).

Препараты витамина Е используются как антиоксиданты при облучениях и других патологических состояниях, связанных с повышенным содержанием в организме ионизированных частиц и активных форм кислорода.

Кроме того, витамин Е назначают беременным женщинам, а также используют в комплексной терапии лечения бесплодия, при мышечной дистрофии и некоторых заболеваниях печени.

Витамин А (рис. 7) был открыт Н. Друммондом в 1916 году.

Этому открытию предшествовали наблюдения за наличием жирорастворимого фактора в пище, необходимого для полноценного развития сельскохозяйственных животных.

Витамин А недаром занимает первое место в витамином алфавите. Он участвует практически во всех процессах жизнедеятельности. Этот витамин необходим для восстановления и сохранения хорошего зрения.

Он также помогает вырабатывать иммунитет ко многим заболеваниям, в том числе и простудным.

Без витамина А невозможно здоровое состояние эпителия кожи. Если у вас «гусиная кожа», которая чаще всего появляется на локтях, бедрах, коленях, голенях, если появилась сухость кожи на руках или возникают другие подобные явления, это означает, что вам недостает витамина А.

Витамин А, как и витамин Е, необходим для нормального функционирования половых желез (гонад). При гиповитаминозе витамина А отмечено повреждение репродуктивной системы и органов дыхания.

Одним из специфических последствий недостатка витамина А является нарушение процесса зрения, в частности снижение способности глаз к темновой адаптации - куриная слепота . Авитаминоз приводит к возникновению ксерофтальмии и разрушению роговицы. Последний процесс необратим, и характеризуется полной потерей зрения. Гипервитаминоз приводит к воспалению глаз и нарушению волосяного покрова, потери аппетита и полному истощению организма.

Рис. 7. Витамин А и продукты, которые его содержат

Витамины группы А, в первую очередь, содержатся в продуктах животного происхождения: в печени, в рыбьем жире, в масле, в яйцах (рис. 8).

Рис. 8. Содержание витамина А в продуктах растительного и животного происхождения

В продуктах растительного происхождения содержатся каротиноиды, которые в организме человека под действием фермента каротиназы переходят в витамин А.

Таким образом, Вы познакомились сегодня со структурой и функциями АТФ, а также вспомнили о значении витаминов и выяснили, как некоторые из них участвуют в процессах жизнедеятельности.

При недостаточном поступлении витаминов в организм развивается первичный авитаминоз. Разные продукты содержат разное количество витаминов.

Например, морковь содержит много провитамина А (каротина), капуста содержит витамин С и т. д. Отсюда проистекает необходимость сбалансированной диеты, включающей в себя разнообразные продукты растительного и животного происхождения.

Авитаминоз при нормальных условиях питания встречается очень редко, гораздо чаще встречаются гиповитаминозы , которые связаны с недостаточным поступлением с пищей витаминов.

Гиповитаминоз может возникать не только в результате несбалансированного питания, но и как следствие различных патологий со стороны желудочно-кишечного тракта или печени, или в результате различных эндокринных или инфекционных заболеваний, которые приводят к нарушению всасывания витаминов в организме.

Некоторые витамины вырабатываются кишечной микрофлорой (микробиотой кишечника). Подавление биосинтетических процессов в результате действия антибиотиков может также привести к развитию гиповитаминоза , как следствия дисбактериоза .

Чрезмерное употребление пищевых витаминных добавок, а также лекарственных средств, содержащих витамины, приводит к возникновению патологического состояния - гипервитаминоза . Особенно это характерно для жирорастворимых витаминов, таких как A , D , E , K .

Домашнее задание

1. Какие вещества называют биологически активными?

2. Что такое АТФ? В чем особенность строения молекулы АТФ? Какие типы химической связи существуют в этой комплексной молекуле?

3. Каковы функции АТФ в клетках живых организмов?

4. Где происходит синтез АТФ? Где осуществляется гидролиз АТФ?

5. Что такое витамины? Каковы их функции в организме?

6. Чем витамины отличаются от гормонов?

7. Какие классификации витаминов вам известны?

8. Что такое авитаминоз, гиповитаминоз и гипервитаминоз? Приведите примеры этих явлений.

9. Какие заболевания могут быть следствием недостаточного или избыточного поступления витаминов в организм?

10. Обсудите с друзьями и родственниками свое меню, подсчитайте, пользуясь дополнительной информацией о содержании витаминов в разных продуктах питания, достаточно ли витаминов вы получаете.

1. Единая коллекция Цифровых Образовательных Ресурсов ().

2. Единая коллекция Цифровых Образовательных Ресурсов ().

3. Единая коллекция Цифровых Образовательных Ресурсов ().

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

3. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

АТФ (аденозинтрифосфат) – органическое соединение из группы нуклеозидтрифосфатов, играющее главную роль в целом ряде биохимических процессов, прежде всего в обеспечении клеток энергией.

Навигация по статье

Строение и синтез АТФ

Аденозинтрифосфат представляет собой аденин, к которому присоединены три молекулы ортофосфорной кислоты. Аденин входит в состав многих других соединений, широко распространенных в живой природе, в том числе нуклеиновых кислот.

Выделение энергии, которая используется организмом в самых разных целях, происходит в процессе гидролиза АТФ, приводящего к появлению одной или двух свободных молекул фосфорной кислоты. В первом случае Аденозинтрифосфат превращается в аденозиндифосфат (АДФ), во втором – в аденозинмонофосфат (АМФ).

Синтез АТФ, в живом организме происходит за счет соединения аденозиндифосфата с фосфорной кислотой, может протекать несколькими путями:

  1. Основной: окислительное фосфорилирование, которое происходит во внутриклеточных органеллах – митохондриях, в процессе окисления органических веществ.
  2. Второй путь: субстратное фосфорилирование, протекающее в цитоплазме и играющее центральную роль в анаэробных процессах.

Функции АТФ

Аденозинтрифосфат не играет сколько-нибудь заметной роли в хранении энергии, исполняя скорее транспортные функции в клеточном энергетическом обмене. Аденозинтрифосфат синтезируется из АДФ и вскоре вновь превращается в АДФ с выделением полезной энергии.

Применительно к позвоночным животным и человеку основной функцией АТФ является обеспечение двигательной активности мышечных волокон.

В зависимости от продолжительности усилия, краткосрочная это работа или длительная (циклическая) нагрузка, энергетические процессы достаточно сильно отличаются. Но во всех них важнейшую роль играет аденозинтрифосфат.

Структурная формула АТФ:

Помимо энергетической функции Аденозинтрифосфат играет существенную роль в передаче сигнала между нервными клетками и других межклеточных взаимодействиях, в регуляции действия ферментов и гормонов. Является одним из исходных продуктов для синтеза протеинов.

Сколько образуется молекул АТФ при гликолизе и окислении?

Время жизни одной молекулы обычно составляет не более минуты, так что в отдельный момент содержание этого вещества в организме взрослого человека – порядка 250 грамм. При том, что суммарное количество Аденозинтрифосфата, синтезируемое за сутки, как правило сравнимо с собственным весом организма.

Процесс гликолиза проходит в 3 этапа:

  1. Подготовительный.
    Входе это этапа молекул Аденозинтрифосфата не образуется
  2. Анаэробный.
    Образуется 2 молекулы АТФ.
  3. Аэробный.
    Во время него происходит окисление ПВК, пировиноградной кислоты. Образуется 36 молекул АТФ из 1 молекулы глюкозы.

Всего в процессе гликолиза 1 молекулы глюкозы образуется 38 молекул АТФ: 2 во время анаэробного этапа гликолиза, 36 при окислении пировиноградной кислоты.

Способы получения энергии в клетке

В клетке существуют четыре основных процесса, обеспечивающих высвобождение энергии из химических связей при окислении веществ и ее запасание:

1. Гликолиз (2 этап биологического окисления) – окисление молекулы глюкозы до двух молекул пировиноградной кислоты, при этом образуется 2 молекулы АТФ и НАДН . Далее пировиноградная кислота в аэробных условиях превращается в ацетил-SКоА, в анаэробных условиях – в молочную кислоту.

2. β-Окисление жирных кислот (2 этап биологического окисления) – окисление жирных кислот до ацетил-SКоА, здесь образуются молекулы НАДН и ФАДН 2 . Молекулы АТФ "в чистом виде" не появляются.

3. Цикл трикарбоновых кислот (ЦТК , 3 этап биологического окисления) – окисление ацетильной группы (в составе ацетил-SКоА) или иных кетокислот до углекислого газа. Реакции полного цикла сопровождаются образованием 1 молекулы ГТФ (что эквивалентно одной АТФ), 3 молекул НАДН и 1 молекулы ФАДН 2 .

4. Окислительное фосфорилирование (3 этап биологического окисления) – окисляются НАДН и ФАДН 2 , полученные в реакциях катаболизма глюкозы, аминокислот и жирных кислот. При этом ферменты дыхательной цепи на внутренней мембране митохондрий обеспечивают образование большей части клеточного АТФ .

Два способа синтеза АТФ

В клетке постоянно происходит использование всех нуклеозидтри фосфатов (АТФ, ГТФ, ЦТФ, УТФ, ТТФ) как донора энергии. При этом АТФ является универсальным макроэргом, участвующим практически во всех сторонах метаболизма и деятельности клетки. И именно за счет АТФ обеспечивается фосфорилирование нуклеотидов ГДФ, ЦДФ, УДФ, ТДФ до нуклеозидтри фосфатов.

У других нуклеозидтри фосфатов существует некая специализация. Так, УТФ участвует в обмене углеводов, в частности в синтезе гликогена. ГТФ задействован в рибосомах, участвует в образовании пептидной связи в белках. ЦТФ используется в синтезе фосфолипидов.

Основным способом получения АТФ в клетке является окислительное фосфорилирование, протекающее в структурах внутренней мембраны митохондрий. При этом энергия атомов водорода молекул НАДН и ФАДН 2 , образованных в гликолизе, ЦТК, окислении жирных кислот, преобразуется в энергию связей АТФ.

Однако также есть другой способ фосфорилирования АДФ до АТФ – субстратное фосфорилирование. Этот способ связан с передачей макроэргического фосфата или энергии макроэргической связи какого-либо вещества (субстрата) на АДФ. К таким веществам относятся метаболиты гликолиза (1,3-дифосфоглицериновая кислота , фосфоенолпируват ), цикла трикарбоновых кислот (сукцинил-SКоА ) и резервный макроэрг креатинфосфат . Энергия гидролиза их макроэргической связи выше, чем 7,3 ккал/моль в АТФ, и роль указанных веществ сводится к использованию этой энергии для фосфорилирования молекулы АДФ до АТФ.

Классификация макроэргов

Макроэргические соединения классифицируются по типу связи , несущей дополнительную энергию:

1. Фосфоангидридная связь. Такую связь имеют все нуклеотиды: нуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ, ТТФ) и нуклеозиддифосфаты (АДФ, ГДФ, ЦДФ, УДФ, ТДФ).

2. Тиоэфирная связь. Примером являются ацил-производные коэнзима А: ацетил-SКоА, сукцинил-SКоА, и другие соединения любой жирной кислоты и HS-КоА.

3. Гуанидинфосфатная связь – присутствует в креатинфосфате, запасном макроэрге мышечной и нервной ткани.

4. Ацилфосфатная связь. К таким макроэргам относится метаболит гликолиза 1,3-дифосфоглицериновая кислота (1,3-дифосфоглицерат). Она обеспечивает синтез АТФ в реакции субстратного фосфорилирования.

5. Енолфосфатная связь. Представитель – фосфоенолпируват, метаболит гликолиза. Он также обеспечивает синтез АТФ в реакции субстратного фосфорилирования в гликолизе.

Иконография