Примеры применения теоремы пифагора. Как применять теорему пифагора

Теорема

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов (рис. 1):

$c^{2}=a^{2}+b^{2}$

Доказательство теоремы Пифагора

Пусть треугольник $A B C$ - прямоугольный треугольник с прямым углом $C$ (рис. 2).

Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .

Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ($\angle A C B=\angle C H A=90^{\circ}$, $\angle A$ - общий). Аналогично, треугольник $C B H$ подобен $A B C$ .

Введя обозначения

$$B C=a, A C=b, A B=c$$

из подобия треугольников получаем, что

$$\frac{a}{c}=\frac{H B}{a}, \frac{b}{c}=\frac{A H}{b}$$

Отсюда имеем, что

$$a^{2}=c \cdot H B, b^{2}=c \cdot A H$$

Сложив полученные равенства, получаем

$$a^{2}+b^{2}=c \cdot H B+c \cdot A H$$

$$a^{2}+b^{2}=c \cdot(H B+A H)$$

$$a^{2}+b^{2}=c \cdot A B$$

$$a^{2}+b^{2}=c \cdot c$$

$$a^{2}+b^{2}=c^{2}$$

Что и требовалось доказать.

Геометрическая формулировка теоремы Пифагора

Теорема

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах (рис. 2):

Примеры решения задач

Пример

Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см. Найти гипотенузу этого треугольника.

Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме Пифагора, квадрат гипотенузы

$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$

Отсюда получаем, что искомая гипотенуза

$c=\sqrt{100}=10$ (см)

Ответ. 10 см

Пример

Задание. Найти площадь прямоугольного треугольника, если известно, что один из его катетов на 5 см больше другого, а гипотенуза равна 25 см.

Решение. Пусть $x$ см - длина меньшего катета, тогда $(x+5)$ см - длина большего. Тогда согласно теореме Пифагора имеем:

$$x^{2}+(x+5)^{2}=25^{2}$$

Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:

$x^{2}+5 x-300=0$

Согласно теореме Виета , получаем, что

$x_{1}=15$ (см) , $x_{2}=-20$ (см)

Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший - 20 см.

Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть

$$S=\frac{15 \cdot 20}{2}=15 \cdot 10=150\left(\mathrm{см}^{2}\right)$$

Ответ. $S=150\left(\mathrm{см}^{2}\right)$

Историческая справка

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

В древнекитайской книге "Чжоу би суань цзин" говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий историк математики Мориц Кантор (1829 - 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около 2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Различные способы доказательства теоремы Пифагора

учащаяся 9 «А» класса

МОУ СОШ №8

Научный руководитель:

учитель математики,

МОУ СОШ №8

ст. Новорождественской

Краснодарского края.

Ст. Новорождественская

АННОТАЦИЯ.

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы .

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

Введение. Историческая справка 5 Основная часть 8

3. Заключение 19

4. Используемая литература 20
1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она - навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? - Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора - свойства треугольника со сторонами 3, 4 и 5 - был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «...и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе , например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

Сказка «Дом».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город - город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе , я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.
2. ОСНОВНАЯ ЧАСТЬ.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

1 СПОСОБ.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Доказательство.

а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с ² = 2ав + с ².

Таким образом,

(а + в )² = 2ав + с ²,

с²=а²+в² .

Теорема доказана.
2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

Доказательство.

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС² = АВ * АD, СВ² = АВ * DВ;

АС² + СВ² = АВ * (АD + DВ), где АD+DB=AB, тогда

АС² + СВ² = АВ * АВ,

АС² + СВ² = АВ².

Доказательство закончено.
3 СПОСОБ.

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Доказательство:

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С.

По определению косинуса угла:

cos А = АD/АС = АС/АВ. Отсюда АВ * АD = АС²

Аналогично,

cos В = ВD/ВС = ВС/АВ.

Отсюда АВ * ВD = ВС² .

Складывая полученные равенства почленно и замечая, что АD + DВ = АВ, получим:

АС ² + ВС ² = АВ (АD + DВ) = АВ ²

Доказательство закончено.
4 СПОСОБ.

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с . (рис. 4).

Докажем, что с²=а²+в².

Доказательство.

sinВ= в/с ; cosВ= a/с, то, возведя в квадрат полученные равенства, получим:

sin²В= в²/с²; cos²В = а²/с².

Сложив их, получим:

sin²В + cos²В= в²/с²+ а²/с², где sin²В + cos²В=1,

1= (в²+ а²) / с², следовательно,

с²= а² + в².

Доказательство закончено.

5 СПОСОБ.

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

6 СПОСОБ.

Для доказательства на катете ВС строим BCD ABC (рис.6). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

с2 = а2 + b2.

Доказательство закончено.

7 СПОСОБ.

Дано (рис. 7):

ABС, = 90°, ВС = а, АС= b, АВ = с.

Доказать: с2 = а2 + b2 .

Доказательство.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b, BDM = 90°, DM = a, тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM. Имеем MD CD и AC CD, значит, прямая АС параллельна прямой MD. Так как MD < АС, то прямые CD и AM не параллельны. Следова­тельно, AMDC - прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° - 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

(a+b)(a+b)

Разделив все члены неравенства на , получим

а b + с2 + а b = (а + b) , 2 ab + с2 = а2 + b + b2,

с2 = а2 + b2.

Доказательство закончено.

8 СПОСОБ.

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC. Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

Доказательство.

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC, значит, FBC = DBA.

Таким образом, FBC =ABD (по двум сторонам и углу между ними).

2) , где AL DE, так как BD - общее основание, DL - общая высота.

3) , так как FB –снование, АВ - общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС2 = АВ2 + АС2 . Доказательство закончено.

9 СПОСОБ.

Доказательство.

1) Пусть ABDE - квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а, АС = b).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3)Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b). Тогда КС = СМ = ML = LK = а - b.

4) SKB = 4S + SKLMC = 2ab + (a - b), с 2 = 2ab + a2 - 2ab + b2, c2 = a2 + b2 .

Доказательство закончено.

10 СПОСОБ.

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN. Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC – это параллелограмм AKNB.

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

Произведем преобразование для квадрата, построенно­го на катете а (рис. 11,а):

а) квадрат преобразуется в равновеликий параллелог­рамм (рис. 11,6):

б) параллелограмм поворачивается на четверть оборо­та (рис. 12):

в) параллелограмм преобразуется в равновеликий пря­моугольник (рис. 13): 11 СПОСОБ.

Доказательство:

PCL – прямая (Рис. 14);

KLOA = ACPF = ACED = а2;

LGBO = СВМР = CBNQ = b2;

AKGB = AKLO + LGBO = с2;

с2 = а2 + b2.

Доказательство окончено.

12 СПОСОБ.

Рис. 15 иллюстрирует еще одно ориги­нальное доказательство теоремы Пифагора.

Здесь: треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной пря­мой; четырехугольники ADFB и АСВЕ равновели­ки, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них тре­угольник ABC, получим

, с2 = а2 + b2.

Доказательство закончено.

13 СПОСОБ.

Площадь данного пря­моугольного треугольни­ка, с одной стороны, равна , с другой, ,

3. ЗАКЛЮЧЕНИЕ.

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы её доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный мною материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение. В завершении хотелось бы сказать: причина популярности теоремы Пифагора триедина - это красота, простота и значимость!

4. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.

1. Занимательная алгебра. . Москва «Наука», 1978.

2. Еженедельное учебно-методическое приложение к газете «Первое сентября», 24/2001.

3. Геометрия 7-9. и др.

4. Геометрия 7-9. и др.

По мнению Ван-дер-Вардена , очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э.

Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора .

Формулировки

Основная формулировка содержит алгебраические действия - в прямоугольном треугольнике, длины катетов которого равны a {\displaystyle a} и b {\displaystyle b} , а длина гипотенузы - c {\displaystyle c} , выполнено соотношение:

.

Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры : в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.

Обратная теорема Пифагора - утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} . Как следствие, для всякой тройки положительных чисел a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} , такой, что a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , существует прямоугольный треугольник с катетами a {\displaystyle a} и b {\displaystyle b} и гипотенузой c {\displaystyle c} .

Доказательства

В научной литературе зафиксировано не менее 400 доказательств теоремы Пифагора , что объясняется как фундаментальным значением для геометрии, так и элементарностью результата. Основные направления доказательств: алгебраическое использование соотношений элементов треугольника (таков, например, популярный метод подобия ), метод площадей , существуют также различные экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Классическое доказательство Евклида направлено на установление равенства площадей между прямоугольниками, образованными из рассечения квадрата над гипотенузой высотой из прямого угла с квадратами над катетами.

Конструкция, используемая для доказательства следующая: для прямоугольного треугольника с прямым углом C {\displaystyle C} , квадратов над катетами и и квадрата над гипотенузой A B I K {\displaystyle ABIK} строится высота C H {\displaystyle CH} и продолжающий её луч s {\displaystyle s} , разбивающий квадрат над гипотенузой на два прямоугольника и . Доказательство нацелено на установление равенства площадей прямоугольника A H J K {\displaystyle AHJK} с квадратом над катетом A C {\displaystyle AC} ; равенство площадей второго прямоугольника, составляющего квадрат над гипотенузой, и прямоугольника над другим катетом устанавливается аналогичным образом.

Равенство площадей прямоугольника A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} устанавливается через конгруэнтность треугольников △ A C K {\displaystyle \triangle ACK} и △ A B D {\displaystyle \triangle ABD} , площадь каждого из которых равна половине площади квадратов A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} соответственно в связи со следующим свойством: площадь треугольника равна половине площади прямоугольника, если у фигур есть общая сторона, а высота треугольника к общей стороне является другой стороной прямоугольника. Конгруэнтность треугольников следует из равенства двух сторон (стороны квадратов) и углу между ними (составленного из прямой угла и угла при A {\displaystyle A} .

Таким образом, доказательством устанавливается, что площадь квадрата над гипотенузой, составленного из прямоугольников A H J K {\displaystyle AHJK} и B H J I {\displaystyle BHJI} , равна сумме площадей квадратов над катетами.

Доказательство Леонардо да Винчи

К методу площадей относится также доказательство, найденное Леонардо да Винчи . Пусть дан прямоугольный треугольник △ A B C {\displaystyle \triangle ABC} с прямым углом C {\displaystyle C} и квадраты A C E D {\displaystyle ACED} , B C F G {\displaystyle BCFG} и A B H J {\displaystyle ABHJ} (см. рисунок). В этом доказательстве на стороне H J {\displaystyle HJ} последнего во внешнюю сторону строится треугольник, конгруэнтный △ A B C {\displaystyle \triangle ABC} , притом отражённый как относительно гипотенузы, так и относительно высоты к ней (то есть J I = B C {\displaystyle JI=BC} и H I = A C {\displaystyle HI=AC} ). Прямая C I {\displaystyle CI} разбивает квадрат, построенный на гипотенузе на две равные части, поскольку треугольники △ A B C {\displaystyle \triangle ABC} и △ J H I {\displaystyle \triangle JHI} равны по построению. Доказательство устанавливает конгруэнтность четырёхугольников C A J I {\displaystyle CAJI} и D A B G {\displaystyle DABG} , площадь каждого из которых, оказывается, с одной стороны, равной сумме половин площадей квадратов на катетах и площади исходного треугольника, с другой стороны - половине площади квадрата на гипотенузе плюс площадь исходного треугольника. Итого, половина суммы площадей квадратов над катетами равна половине площади квадрата над гипотенузой, что равносильно геометрической формулировке теоремы Пифагора.

Доказательство методом бесконечно малых

Существует несколько доказательств, прибегающих к технике дифференциальных уравнений . В частности, Харди приписывается доказательство, использующее бесконечно малые приращения катетов a {\displaystyle a} и b {\displaystyle b} и гипотенузы c {\displaystyle c} , и сохраняющие подобие с исходным прямоугольником, то есть, обеспечивающие выполнение следующих дифференциальных соотношений:

d a d c = c a {\displaystyle {\frac {da}{dc}}={\frac {c}{a}}} , d b d c = c b {\displaystyle {\frac {db}{dc}}={\frac {c}{b}}} .

Методом разделения переменных из них выводится дифференциальное уравнение c d c = a d a + b d b {\displaystyle c\ dc=a\,da+b\,db} , интегрирование которого даёт соотношение c 2 = a 2 + b 2 + C o n s t {\displaystyle c^{2}=a^{2}+b^{2}+\mathrm {Const} } . Применение начальных условий a = b = c = 0 {\displaystyle a=b=c=0} определяет константу как 0, что в результате даёт утверждение теоремы.

Квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Вариации и обобщения

Подобные геометрические фигуры на трёх сторонах

Важное геометрическое обобщение теоремы Пифагора дал Евклид в «Началах », перейдя от площадей квадратов на сторонах к площадям произвольных подобных геометрических фигур : сумма площадей таких фигур, построенных на катетах, будет равна площади подобной им фигуры, построенной на гипотенузе.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A {\displaystyle A} , B {\displaystyle B} и C {\displaystyle C} , построенных на катетах с длинами a {\displaystyle a} и b {\displaystyle b} и гипотенузе c {\displaystyle c} соответственно, имеет место соотношение:

A a 2 = B b 2 = C c 2 ⇒ A + B = a 2 c 2 C + b 2 c 2 C {\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}\,\Rightarrow \,A+B={\frac {a^{2}}{c^{2}}}C+{\frac {b^{2}}{c^{2}}}C} .

Так как по теореме Пифагора a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , то выполнено .

Кроме того, если возможно доказать без привлечения теоремы Пифагора, что для площадей трёх подобных геометрических фигур на сторонах прямоугольного треугольника выполнено соотношение A + B = C {\displaystyle A+B=C} , то с использованием обратного хода доказательства обобщения Евклида можно вывести доказательство теоремы Пифагора. Например, если на гипотенузе построить конгруэтный начальному прямоугольный треугольник площадью C {\displaystyle C} , а на катетах - два подобных ему прямоугольных треугольника с площадями A {\displaystyle A} и B {\displaystyle B} , то оказывается, что треугольники на катетах образуются в результате деления начального треугольника его высотой, то есть сумма двух меньших площадей треугольников равна площади третьего, таким образом A + B = C {\displaystyle A+B=C} и, применяя соотношение для подобных фигур, выводится теорема Пифагора.

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике :

a 2 + b 2 − 2 a b cos ⁡ θ = c 2 {\displaystyle a^{2}+b^{2}-2ab\cos {\theta }=c^{2}} ,

где - угол между сторонами a {\displaystyle a} и b {\displaystyle b} . Если угол равен 90°, то cos ⁡ θ = 0 {\displaystyle \cos \theta =0} , и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

Существует обобщение теоремы Пифагора на произвольный треугольник, оперирующее исключительно соотношением длин сторон, считается, что оно впервые было установлено сабийским астрономом Сабитом ибн Куррой . В нём для произвольного треугольника со сторонами в него вписывается равнобедренный треугольник с основанием на стороне c {\displaystyle c} , вершиной, совпадающей с вершиной исходного треугольника, противолежащей стороне c {\displaystyle c} и углами при основании, равными углу θ {\displaystyle \theta } , противолежащему стороне c {\displaystyle c} . В результате образуются два треугольника, подобных исходному: первый - со сторонами a {\displaystyle a} , дальней от неё боковой стороной вписанного равнобедренного треугольника, и r {\displaystyle r} - части стороны c {\displaystyle c} ; второй - симметрично к нему от стороны b {\displaystyle b} со стороной s {\displaystyle s} - соответствующей частью стороны c {\displaystyle c} . В результате оказывается выполнено соотношение :

a 2 + b 2 = c (r + s) {\displaystyle a^{2}+b^{2}=c(r+s)} ,

вырождающееся в теорему Пифагора при θ = π / 2 {\displaystyle \theta =\pi /2} . Соотношение является следствием подобия образованных треугольников:

c a = a r , c b = b s ⇒ c r + c s = a 2 + b 2 {\displaystyle {\frac {c}{a}}={\frac {a}{r}},\,{\frac {c}{b}}={\frac {b}{s}}\,\Rightarrow \,cr+cs=a^{2}+b^{2}} .

Теорема Паппа о площадях

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и недействительна для неевклидовой геометрии - выполнение теоремы Пифагора равносильно постулату Евклида о параллельности .

В неевклидовой геометрии соотношение между сторонами прямоугольного треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника, которые ограничивают собой октант единичной сферы, имеют длину π / 2 {\displaystyle \pi /2} , что противоречит теореме Пифагора.

При этом теорема Пифагора справедлива в гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R {\displaystyle R} (например, если угол в треугольнике прямой) со сторонами a , b , c {\displaystyle a,b,c} соотношение между сторонами имеет вид :

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)} .

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которая справедлива для всех сферических треугольников:

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) + sin ⁡ (a R) ⋅ sin ⁡ (b R) ⋅ cos ⁡ γ {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)+\sin \left({\frac {a}{R}}\right)\cdot \sin \left({\frac {b}{R}}\right)\cdot \cos \gamma } . ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b} ,

где ch {\displaystyle \operatorname {ch} } - гиперболический косинус . Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников :

ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b − sh ⁡ a ⋅ sh ⁡ b ⋅ cos ⁡ γ {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b-\operatorname {sh} a\cdot \operatorname {sh} b\cdot \cos \gamma } ,

где γ {\displaystyle \gamma } - угол, вершина которого противоположна стороне c {\displaystyle c} .

Используя ряд Тейлора для гиперболического косинуса ( ch ⁡ x ≈ 1 + x 2 / 2 {\displaystyle \operatorname {ch} x\approx 1+x^{2}/2} ) можно показать, что если гиперболический треугольник уменьшается (то есть, когда a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} стремятся к нулю), то гиперболические соотношения в прямоугольном треугольнике приближаются к соотношению классической теоремы Пифагора.

Применение

Расстояние в двумерных прямоугольных системах

Важнейшее применение теоремы Пифагора - определение расстояния между двумя точками в прямоугольной системе координат : расстояние s {\displaystyle s} между точками с координатами (a , b) {\displaystyle (a,b)} и (c , d) {\displaystyle (c,d)} равно:

s = (a − c) 2 + (b − d) 2 {\displaystyle s={\sqrt {(a-c)^{2}+(b-d)^{2}}}} .

Для комплексных чисел теорема Пифагора даёт естественную формулу для нахождения модуля комплексного числа - для z = x + y i {\displaystyle z=x+yi} он равен длине

Г. Глейзер,
академик РАО, Москва

О теореме Пифагора и способах ее доказательства

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах...

Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Мне кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думаю, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.

Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.

Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует из рис. 1.

С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.

Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков.

Доказательство Пифагора

";Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах. "; Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямо­угольного треугольника. Вероятно, с него и на­чиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для DАВС: квадрат, построенный на гипо­тенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катететах по два. Теорема доказана.

Доказательства, основанные на использовании понятия равновеликости фигур.

При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

Аддитивные доказательства.

Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

Здесь: ABC – прямоугольный треугольник с прямым углом C; CMN; CKMN; PO||MN; EF||MN.

Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

Докажите теорему с помощью этого разбиения.

 На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).

 Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.

 Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

Доказательства методом достроения.

Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь CEP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

На рис. 8 Пифагорова фигура достроена до прямоугольника, стороны которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.

Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

KLOA = ACPF = ACED = a 2 ;

LGBO = CBMP = CBNQ = b 2 ;

AKGB = AKLO + LGBO = c 2 ;

отсюда c 2 = a 2 + b 2 .

OCLP = ACLF = ACED = b 2 ;

CBML = CBNQ = a 2 ;

OBMP = ABMF = c 2 ;

OBMP = OCLP + CBML;

c 2 = a 2 + b 2 .

Алгебраический метод доказательства.

Рис. 12 иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.

Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.

На рис. 13 ABC – прямоугольный, C – прямой угол, CMAB, b 1 – проекция катета b на гипотенузу, a 1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

Из того, что ABC подобен ACM следует

b 2 = cb 1 ; (1)

из того, что ABC подобен BCM следует

a 2 = ca 1 . (2)

Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb 1 + ca 1 = c(b 1 + a 1) = c 2 .

Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

Доказательство Мёльманна (рис. 14).
Площадь данного прямоугольного треугольника, с одной стороны, равна с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем:

откуда следует, что c 2 =a 2 +b 2 .

во втором

Приравнивая эти выражения, получаем теорему Пифагора.

Комбинированный метод

Равенство треугольников

c 2 = a 2 + b 2 . (3)

Сравнивая соотношения (3) и (4), получаем, что

c 1 2 = c 2 , или c 1 = c.

Таким образом, треугольники – данный и построенный – равны, так как имеют по три соответственно равные стороны. Угол C 1 прямой, поэтому и угол C данного треугольника тоже прямой.

Древнеиндийское доказательство.

Матема­тики Древней Индии заметили, что для доказа­тельства теоремы Пифагора достаточно исполь­зовать внутреннюю часть древнекитайского чер­тежа. В написанном на пальмовых листьях трак­тате «Сиддханта широмани» («Венец знания») крупнейшего индийского математика ХП в. Бха-скары поме­щен чертеж (рис. 4)

характерным для индийских доказательств l словом «смотри!». Как видим, прямоугольнь-ные треугольники уложены здесь гипотенузой наружу и квадрат с 2 перекладывается в «крес­ло невесты» с 2 2 . Заметим, что частные слу­чаи теоремы Пифагора (например, построение квадрата, площадь которого вдвое больше рис.4 площади данного квадрата) встречаются в древнеиндийском трактате ";Сульва";

Решили прямоугольный треугольник и квадраты, построенные на его катетах, или, иначе, фигуры, составленные из 16 одинаковых равнобедренных прямоугольных треугольников и потому укладывающиеся в квадрат. Такова лили. малая толика богатств, скрытых в жемчужине античной математики - теореме Пифагора.

Древнекитайское доказательство.

Математические трактаты Древнего Китая дошли до нас в редакции П в. до н.э. Дело в том, что в 213 г. до н.э. китайский император Ши Хуан-ди, стремясь ликвидировать прежние традиции, приказал сжечь все древние книги. Во П в. до н.э. в Китае была изобретена бумага и одно­временно начинается воссоздание древних книг.Главное из сохранивших­ся астрономических сочинений - в книге «Математика» помещен чертеж (рис. 2, а), доказы­вающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. В самом деле, на древне­китайском чертеже четыре равных прямоугольных треугольника с кате­тами a, b и гипотенузой с уложены г) так, что их внешний контур образует Рис- 2 квадрат со стороной а+Ь, а внутрен­ний - квадрат со стороной с, построенный на гипотенузе (рис. 2, б). Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника (рис. 2, в), то ясно, что образовавшаяся пустота, с одной стороны, равна С 2 , а с другой - с 2 2 , т.е. c 2=  2 +b 2 . Теорема доказана. Заметим, что при таком доказательстве построения внутри квадрата на гипотенузе, которые мы ви­дим на древнекитайском чертеже (рис. 2, а), не используются. По-видимому, древ­некитайские математики имели другое доказательство. Именно если в квадрате со стороной с два заштрихованных треугольника (рис. 2, б) отрезать и приложить гипотенузами к двум другим гипотенузам (рис. 2, г), то легко обнаружить, что

Полученная фигура, которую иногда называют «креслом невесты», состоит из двух квадратов со сторонами а и Ь, т.е. c 2 == a 2 2 .

На рисунке 3 воспроизведен чертеж из трактата «Чжоу-би...». Здесь теорема Пифагора рассмотрена для египетского треугольника с катетами 3, 4 и гипотену­зой 5 единиц измерения. Квадрат на гипотенузе содержит 25 клеток, а вписанный в него квадрат на большем катете-16. Ясно, что оставшаяся часть содержит 9 клеток. Это и будет квадрат на меньшем катете.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты - стороны, пересекающиеся под прямым углом), а гипотенузу - как «с» (гипотенуза - самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b - это катеты, а с - гипотенуза.

    • В нашем примере напишите: 3² + b² = 5² .
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени - вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения. На данном этапе на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне - свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4 .
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни - в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров .
  • Теология